티스토리 뷰

Let $A$ and $B$ be $n\times n$ matrices. Also let $f$ and $g$ be lineat operators such that $f(x) = Ax$, $g(x) = Bx$. Because $AB = E$, $A$ and $B$ are invertible, and $f$ and $g$ are bijective. (Proof is left as an exercise.) Now we have,
\begin{align}
f \circ g = id \to (f \circ g)(x) = x
\end{align}
then for all $x\in \mathbb{F}^n$,
\begin{align}
g(x) = g ((f\circ g)(x)) = (g \circ f)(g(x))
\end{align}
is satisfied. Because $g$ is bijective, this applies to all the elements in $\mathbb{F}^n$. Therefore, $g \circ f$ is also identity map and $BA = E$.
'mathe' 카테고리의 다른 글
| 귀류법이란? (0) | 2025.09.07 |
|---|---|
| Rank-Nullity Theorem과 그 이면의 구조에 대하여 (0) | 2025.08.15 |
| Matrix representation of a linear transformation (0) | 2025.08.11 |
| 필요조건과 충분조건, statement와 expression (0) | 2025.06.30 |
| Basic properties of group homomorphism (0) | 2025.01.22 |
댓글