티스토리 뷰

mathe

Basic properties of group homomorphism

게으른 the lazy 2025. 1. 22. 09:59

 

Suppose f:GG is a group homomorphism, and e and e are the identity elements of G and G, respectively.

 

1. Identity preservation: f(e)=e

 

pf) gG,f(g)=f(eg)=f(e)f(g). Thus f(e)=e.

 


 

2. Inverse preservation: gG,f(g1)=f(g)1

 

pf) gG,e=f(e)=f(gg1)=f(g)f(g1). Thus f(g)1=f(g1).

 


 

3. Kernel is a normal subgroup: kerfG

 

pf) hkerf,gG,

 

f(ghg1)=f(g)f(h)f(g1)=f(g)f(g1)=e

 

Thus ghg1kerf.

 


 

4. Image is a subgroup of G'.

 

pf) (closedness) u,vf(G), let f(x)=u,f(y)=v. Then

 

uv=f(x)f(y)=f(xy)f(G).

 

(identity element) ef(G) since f(e)=e.

 

(inverse element) Pick any uf(G). Let f(x)=u. Then

 

e=f(e)=f(xx1)=f(x)f(x1)=uf(x1).

 

Thus f(x1) is the inverse of u.

 


 

5. 1st isomorphism thm: G/kerff(G)

 

pf) Define a function

 

f:G/kerff(G)gkerff(g)

 

(well-definedness) If g1kerf=g2kerf for g1,g2G, then

 

g11g2kerff(g11g2)=ef(g11)f(g2)=ef(g1)=f(g2)

 

(1-1) If f(g1)=f(g2), then

 

f(g1)=f(g2)f(g11g2)=eg11g2kerfg1kerf=g2kerf

 

(onto) f(g)G,gkerfG/kerf.

 


 

6. Image of a subgroup is a subgroup.

 

pf) Let H be a subgrup of G.

 

(closedness) Pick any f(x) and f(y) from f(G). Then xyG and f(x)f(y)=f(xy)f(G).

 

(identity element) Because HG, eH and ef(H).

 

(inverse element) Pick any f(x) from f(G). Because x1G, f(x1)=f(x)1f(G) which is the inverse of f(x).

 


 

7. Preimage of a subgroup is a subgroup.

 

pf) Let H be a subgroup of G and H0=f1(H).

 

(closedness) Pick any x,yH0. Because f(x)H, f(y)H and H is a subgroup of G, f(xy)=f(x)f(y)H. By definition of preimage, xyH0.

 

(identity element) Because eH, ekerfH0.

 

(inverse element) Pick any xH0. Because both f(x) and f(x1) are in H, x1H0.

 


 

8. kerfHGf1(f(H))=H.

 

pf) f1(f(H))H: Trivial.

 

f1(f(H))H: Let xf1(f(H)) which means f(x)f(H). Suppose xH. Then hH s.t. f(x)=f(h). Because f is a group homomorphism,

 

e=f(h)f(h1)=f(x)f(h1)=f(xh1)

 

Therefore xh1kerfH which contradicts with the assumption that xH.

 

 

 

 

 

'mathe' 카테고리의 다른 글

[HORIZON] 전구의 불은 켜질까?  (0) 2025.01.13
Sum of uncountably many positive numbers is always infinite.  (0) 2025.01.13
Euler-Phi Function  (0) 2025.01.06
다변수 함수의 미분 가능성  (0) 2024.08.25
테일러 급수의 수렴 조건  (0) 2024.08.25
댓글