티스토리 뷰
[Thm 1] For integers $m$, $n$, $x$, if $m$ and $n$ are coprime, then the followings are equivalent.
(a) $\gcd(mn, x) = 1$
(b) $\gcd(m, x) = 1$ and $\gcd(n, x) = 1$
(c) $\gcd(m, a) = 1$ and $\gcd(n, b) = 1$ where $a$ and $b$ are remainders of $x$ divided by $m$ and $n$, respectively.
[Def] $\mathbb{U}_n := \{x\in \mathbb{Z} \;|\; 0 \le x < n, \gcd(n, x) = 1 \}$
Given two coprime positive integers $m$, $n$, define a function
\begin{align}
f: \mathbb{U}_{mn} &\to \mathbb{U}_m \times \mathbb{U}_n \\
x &\mapsto (a, b)
\end{align}
where
$x = q_1 m + a$ for some $q_1 \in \mathbb{Z}$
$x = q_2 n + b$ for some $q_2 \in \mathbb{Z}$
Claim: $f$ is bijective.
1) onto
Pick any $(a, b)$ from $\mathbb{U}_m \times \mathbb{U}_n$. Define
$A := \{ a + qm \; | \; q \in \mathbb{Z} \}$
$B := \{ b + qn \; | \; q \in \mathbb{Z} \}$
We have to find a nonnegative integer $x \in A \cap B$ which is smaller than $mn$. Because $\gcd(m, n)=1$, $ms + nt = 1$ for some $s, t \in \mathbb{Z}$. Then,
$$ms(a-b) + nt(a-b) = a-b$$
Define an integer $X$ as
$$X := a + ms(b-a) = b + nt(a-b)$$
which is in $A \cap B$. Now define $x$ as the remainder of $X$ divided by $mn$, i.e.,
$$X = q(mn) + x$$
for some $q \in \mathbb{Z}$. Because the remainder of $x$ divided by $m$ is $a$, and the remainder of $x$ divided by $n$ is $b$, $x$ is in $A \cap B$. By Thm 1, $\gcd(mn, x)=1$.
2) 1-1
Let us assume $x_1, x_2 \in \mathbb{U}_{mn}$, $x_1 \neq x_2$, and $f(x_1) = f(x_2) = (a, b)$. Then
\begin{align}
x_1 = mq_1 + a \\
x_2 = mq_2 + a
\end{align}
for some $q_1, q_2 \in \mathbb{Z}$. So $m | x_1 - x_2$. Similarly $n | x_1 - x_2$. Since $m$ and $n$ are coprime, $mn | x_1 - x_2$. It contradicts the fact that $x_1, x_2 \in \mathbb{U}_{mn}$.
'mathe' 카테고리의 다른 글
[HORIZON] 전구의 불은 켜질까? (0) | 2025.01.13 |
---|---|
Sum of uncountably many positive numbers is always infinite. (0) | 2025.01.13 |
다변수 함수의 미분 가능성 (0) | 2024.08.25 |
테일러 급수의 수렴 조건 (0) | 2024.08.25 |
"기초가 없는데 중학교 수학부터 보면 될까요?" (2) | 2024.08.11 |