티스토리 뷰

pixabay

 

 

Suppose a set X={xα>0|αI} is an uncountable set. We will show that the sum of all elements of X is infinite. Consider the family of the following sets.

 

Sn:=

 

Then

 

nNSn=X

 

X is uncountable, so there exists n0N such that Sn0 is an infinite set. Since the sum of all elements of Sn0 is infinite and Sn0X, the sum of all elements of X is also infinite. ■

 

 

'mathe' 카테고리의 다른 글

Basic properties of group homomorphism  (0) 2025.01.22
[HORIZON] 전구의 불은 켜질까?  (0) 2025.01.13
Euler-Phi Function  (0) 2025.01.06
다변수 함수의 미분 가능성  (0) 2024.08.25
테일러 급수의 수렴 조건  (0) 2024.08.25
댓글