티스토리 뷰
[mechanics] Regardlessness of point of moment calculation about an axis
게으른 the lazy 2022. 8. 26. 20:47
Moment of a force about an axis through the origin $O$ can be calculated in two ways:
(1) $\vec{M}_{L} = \vec{r_2} \times \vec{F_2}$
(2) $\vec{M}_{L} = \vec{\lambda} \cdot \left( \vec{r} \times \vec{F} \right)$
where $\lambda$ is a unit vector in the direction of $L$, $\vec{F}_{1}$ is a component of $\vec{F}$ normal to the plane $P$, $\vec{F}_{2}$ parallel to the plane $P$, $P$ is a plane perpendicular to $L$. In eq. (2) the moment is calculated about the origin. But it can be shown that the moment of $\vec{F}$ about the axis $L$ is obtained using any point on the axis $L$. Let us consider a point on $L$, $S$, which satisfies
$\vec{OS} = s\vec{\lambda}$.
Moment of $\vec{F}$ about $L$ using $S$ is
$\vec{M}_{L,S} = \vec{\lambda} \cdot \left( \left(-s\vec{\lambda} + \vec{r}\right) \times \vec{F} \right).$
Then,
$\vec{M}_{L}-\vec{M}_{L,S} = \vec{\lambda} \cdot \left( \left(-s\vec{\lambda} + \vec{r}\right) \times \vec{F} \right) -\vec{\lambda} \cdot \left( \vec{r} \times \vec{F} \right).$
Using the property of mixed triple product which is
$\vec{A}\cdot \left( \vec{B} \times \vec{C}\right) = \vec{B}\cdot \left( \vec{C} \times \vec{A}\right) = \vec{C}\cdot \left( \vec{A} \times \vec{B}\right) $,
difference between two moments is
\begin{align*} \vec{M}_{L}-\vec{M}_{L,S} =& \left(-s\vec{\lambda} + \vec{r}\right) \cdot \left( \vec{F} \times \vec{\lambda} \right) - \vec{r} \cdot \left( \vec{F} \times \vec{\lambda} \right) \\ =& -s\vec{\lambda} \cdot \left( \vec{F} \times \vec{\lambda} \right) \\ =& -s\vec{F} \cdot \left( \vec{\lambda} \times \vec{\lambda} \right) \\ =&0 \end{align*}
which means $\vec{M}_{L,S} = \vec{M}_{L}$ for any point $S$ on $L$.
- lazy engineer
'mechanics' 카테고리의 다른 글
힘이 축에 대해 가하는 모멘트 계산하기 (0) | 2024.05.10 |
---|---|
타원, 케플러, 궤도운동 (0) | 2024.04.29 |
[mechanics] Truss analysis: Practice (0) | 2022.08.31 |
마찰력의 역학적 이해 (부제: 초원이는 꼭 손을 내밀어야 했을까) (0) | 2022.08.30 |
[mechanics] Why can moment vectors be freely moved? (0) | 2022.08.26 |