Basic properties of group homomorphism
Suppose $f: G \to G'$ is a group homomorphism, and $e$ and $e'$ are the identity elements of $G$ and $G'$, respectively. 1. Identity preservation: $f(e) = e'$ pf) $\forall g\in G, f(g) = f(e\,g) = f(e) f(g)$. Thus $f(e) = e'$. 2. Inverse preservation: $\forall g\in G, f(g^{-1}) = f(g)^{-1}$ pf) $\forall g\in G, e' = f(e) = f(g\,g^{-1}) = f(g) f(g^{-1})$. Thus $f(g)^{-1} = f(g^{-1})$. 3. Kern..
mathe
2025. 1. 22. 09:59